

Building Quality Science using Al

Prof. Dr. Thomas Friedli Matteo Bernasconi

> made possible, in part, by the Food and Drug Administration through BAA contracts [#75F40121C00161, #75F40119C10121] and grants [#5U01FD005675-02, #1U01FD005675-01]. The views expressed in written materials or publications and by speakers and moderators do not necessarily reflect the official policies of the Department of Health and Human Services; nor does any mention of trade names, commercial practices, or organization imply endorsement by the United States Government

Funding for some of the research contained in this presentation is

RAPS HEALTHCARE PRODUCTS COLLABORATIVE

Agenda

FDA BAA: RiskSurve – Overview & Results

Our Data and Scientific Background

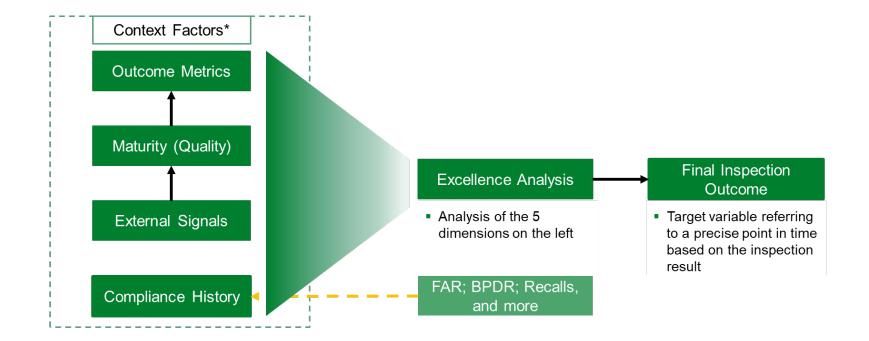
Summary & Outlook

Agenda

FDA BAA: RiskSurve – Overview & Results

Our Data and Scientific Background

Summary & Outlook


FDA's ongoing efforts to characterize site quality in the context of a broader surveillance strategy motivated the goal of our current BAA

This project aims to create a <u>comprehensive</u> <u>Remote Site Risk Surveillance Model</u> consolidating data from the four dimensions <u>Outcome Metrics</u>, <u>Quality Management</u> <u>Maturity</u>, <u>Compliance History</u>, <u>External Signals</u> embedded in their relevant <u>Context</u>.

RiskSurve relies on a conceptual framework to drive our analysis and develop the predictive model

We operationalized four dimensions

Outcome Metrics – 9 Metrics in 4 categories *Maintenance:* e.g. Unplanned Maintenance

Quality: e.g. Rejected Batches

Delivery: e.g. On Time In Full

Efficiency: e.g. Maintenance FTEs/ Overall FTEs

Maturity (Quality) – 13 Items in 3 categories

Performance Measurement & Continuous Improvement

Collaboration Culture & Organization

Training & Skills

Compliance History – 2 Perspectives

Site Perspective:

 Past compliance Information from the manufacturing facility

Corporate Perspective:

 Identification of network wide quality failures to rise flag alerts related to the manufacturing network

External Signals – Proxies for Performance & Maturity

Proxy for Performance & Maturity on Corporate Level:

 Collection of publicly available data from the web to calculate proxies for:

Employee Culture – Site vs. Corporate, Low vs. High tiers

 Performance & Complexity – Financial & Product

 related information

We have tested three Classification Models

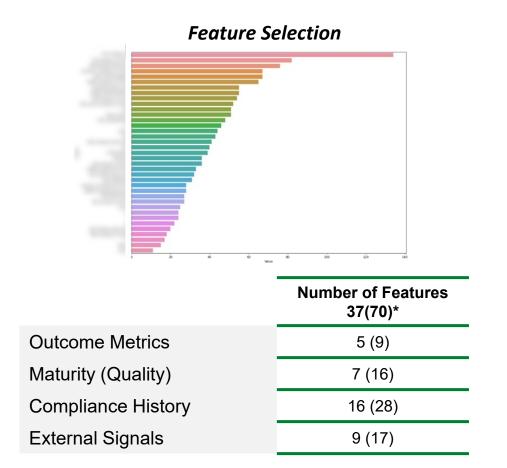
1	Support Vector Machines	 Find an optimum decision boundary that separates datapoints belonging to different classes Efficient for small datasets, handles multi-modality, does not get stuck in local minimum 	
2	LightGBM	 A boosting framework that uses ensemble of decision trees similar to XGBoost; gradient boosting of performance on model residuals Faster training speed, better accuracy, lower memory usage, handles bigger datasets 	UUU VUU VUU VUU VUU VUU VUU VUU VUU VUU
3	Random Forest	 Based on bagging of decision tress on randomized bootstrapping of data and random subset of features Faster processing speed, useful for ranking variable importance, but more importance on hyperparameter for model performance optimization 	

ŧ

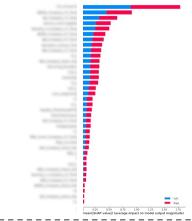
After comparing the accuracy of three different classification models, we selected the Light Gradient Boosting Machine (LightGBM)

During the model development, we observed **how tree-based** models (LightGBM and Random Forest) **outperformed** the Support Vector Machine model. The **quicker computation time and accuracy** of the result made us **selecting the LightGBM** over the RF

LightGBM Multiclass Classification			LightG	LightGBM Sequentially Binary Classification							
	Dimension & Context Factors				Step 1: NAI vs VAI & OAI			Step 2: VAI vs. OAI			
	Accuracy _{avg}	F1 _{NAI}	F1 _{VAI}	F1 _{OAI}		Accuracy _{avg}	F1 _{NAI}	F1 _{Rest}	Accuracy _{avg}	F1 _{VAI}	F1 _{OAI}
FIR0	56%	40%	70%	0%	FIR0	56%	33%	67%	75%	84%	40%
FIR1	61%	50%	71%	0%	FIR1	61%	40%	71%	70%	82%	0%
FIR2	65%	50%	74%	57%	FIR2	57%	27%	69%	88%	92%	67%


Results in multiclass and binary classification settings showed better accuracy with FIR2, since the model has more data available. Additionally, due to our aim, the sequentially binary classification is more suitable and reveals better accuracy compared to the multiclass.

Therefore, we continued with a sequentially binary classification with FIR2 as target variable.

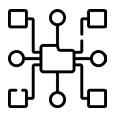


Overview on the feature selection in iteration 4 Features Overview Overall Model

- Compliance history is the dimension with the majority of features in this iterations.
 Site perspective is the feature with the greater contribution;
- However, for better model accuracy, a balanced mix between the four dimensions is required

*Number not in brackets showing the number of features in this model/iteration. Number in brackets showing the overall number of features in the initial model.

Building upon existing results we needed additional qualitative insights

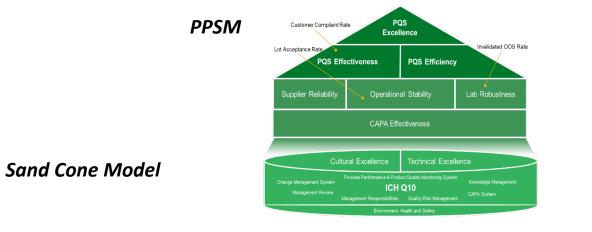

We aimed at proposing additions to the site surveillance strategy

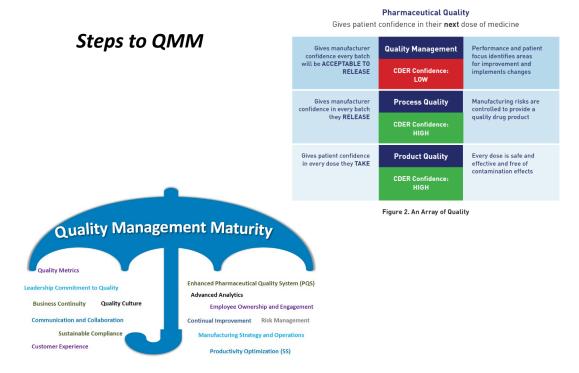
... by leveraging findings from year-one and new insights

Technically

Inlucding additional influential factors with critcality levels to existing site selection algorithm.

Organizationally


How to include the additional influential factors and what are the implications to the site selection process.


Find yea	dings from r-one	The basis for year two extension. Identified important relations between compliance history, maturity, outcome performance, and external signals.
2 Crit sele	icality Levels for ected Metrics	Derivation of criticality levels, upper or lower limits, to flag risks. Provides information about the influential degree and boundary conditions of parameters.
3 Site Rar	e Excellence nking Logic	Derivation of a site ranking logic and measurement scale. Categorization might have an impact on surveillance strategy.
4 Qua Vali	alitative dation	Interviews with regulators (FDA & PICS) as well as with the industry
		HEALTHCARE

AFDO

Our Excellence Score should consider several perspectives

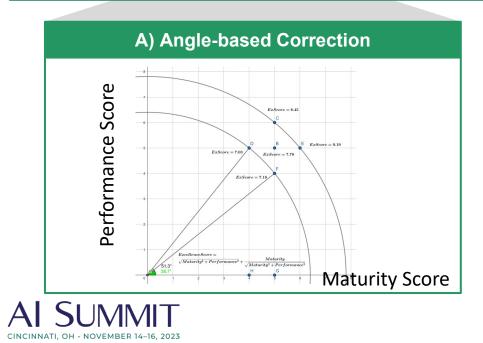
FDA (2022). Quality management maturity: essential for stable U.S. supply chain of quality pharmaceuticals Ferdows & de Meyer (1990). Lasting improvements in manufacturing performance: in search of a new theory. CINCINNATI, OH · NOVEMBER 14-16, 2023 Journal of Operations Management

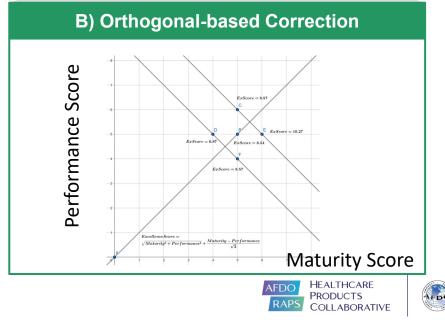
Friedli et al. (2019). FDA quality metrics initiative - third year report.

The excellence score must consider both performance and maturity scores simultaneously, since the analysis reveals the existence of synergies

Linear Relationship between Maturity Score and Performance Score

Our analysis shows a positive linear relationship between maturity and performance. The Excellence Score must reflect this relationship and especially the 4 quadrants depicted in the graph, by providing a higher weighting to maturity instead of performance since this provides the basis for a sustainable performance outcome.





Our concept of the Excellence Score must respect multiple criteria to guarantee a correct scoring and resulting ranking logic – we tested two possibilities

EXCELLENCE SCORE

- Criteria
- For equal performance score a higher maturity score must lead to a higher Excellence Score; 1)
- 2) For equal maturity score a higher performance score must lead to a higher Excellence Score;
- If the average value of performance and maturity score is the same for two establishment, the one with the higher maturity 3) score must have a higher Excellence Score;

Inspiring Collaboration. Leading Innovation. Making a difference.

Options

Agenda

FDA BAA: RiskSurve – Overview & Results

Our Data and Scientific Background

Summary & Outlook

Our competitive advantage? The availability of data!

Outcome Metrics – 9 Metrics in 4 categories *Maintenance*: e.g. Unplanned Maintenance

Quality: e.g. Rejected Batches

Delivery: e.g. On Time In Full

Efficiency: e.g. Maintenance FTEs/ Overall FTEs

Maturity (Quality) – 13 Items in 3 categories

Performance Measurement & Continuous Improvement

Collaboration Culture & Organization

Training & Skills

Compliance History – 2 Perspectives

Site Perspective:

 Past compliance Information from the manufacturing facility

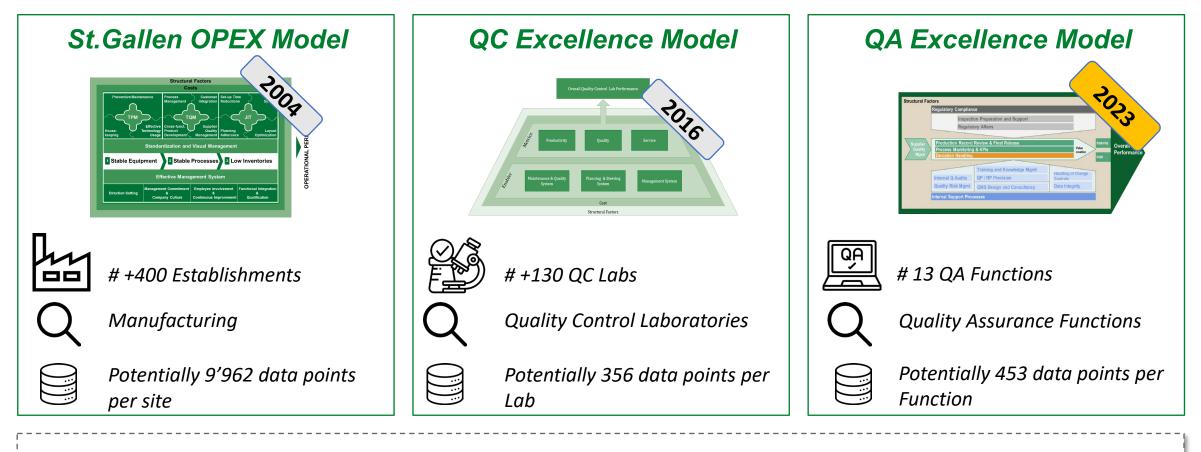
Corporate Perspective:

 Identification of network wide quality failures to rise flag alerts related to the manufacturing network

External Signals – Proxies for Performance & Maturity

Proxy for Performance & Maturity on Corporate Level:

 Collection of publicly available data from the web to calculate proxies for:

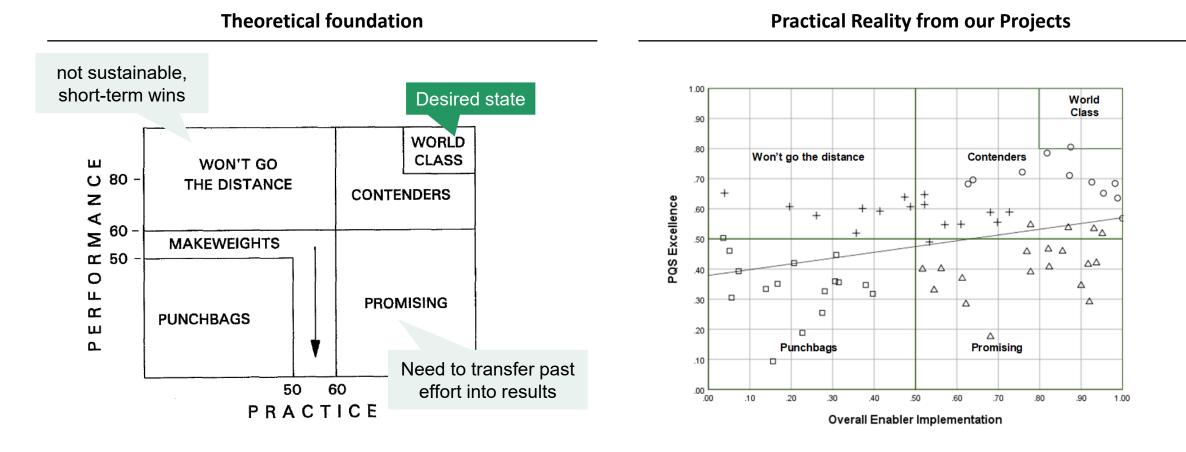

Employee Culture – Site vs. Corporate, Low vs. High tiers

Performance & Complexity – Financial & Product v related information

Our data have been collected over the years in three main benchmarking exercises

We have a solid backbone of operational data to empirically investigate multiple questions!

We conduct our analysis by following some well known theories



3 Source: Juan Andres at ISPE/FDA/PQRI Quality Manufacturing Conference in Washington DC (2015);

Ferdows & de Meyer (1990)

Sustainable performance improvements can only be built on maturity – in systems, processes, tools, and people

AFDO HEALTHCARE PRODUCTS COLLABORATIVE

Agenda

FDA BAA: RiskSurve – Overview & Results

3

Our Data and Scientific Background

Summary & Outlook

Summary

1	A combination of regulatory and operations data yields the best results in predicting final inspection classifications	
2	An ontology supported us in data management, data selection, and made the later model outputs more open to interpretation	
3	Data is key	
4	The potential of AI to deepen our understanding about interdependences is enormous	
5	AI has the potential to support the development of scientific base for quality in operations also beyond pharma	

We have been awarded a new 2-years BAA with the FDA

Drive Predictive Continuous Improvement (CI) Acceleration – Towards Performance Based Regulation Regulations and Oversight

System						
	ata and past knowled ency and understandi		tive models and			
Natural Language Processing (NLP) Leveraging paid documentation from the spenty and embed the knowledge and information to machine learning (ML) models to improve operations	Approach Documents selection Combination of documents in scope Combination of different scures and assessment of the comparability	Preparation Dipalatasion and text mining of the text-based information Text preparation for ML models	3 Analysis Create predictive models bases on text Evaluate model performance and explanability			
	Expected Results	documentation	oved knowledge management from documentation and possibility to or validate processes (e.g., sctions, warning letters,) 'ear 1			

Work Stream Expected Results

- Improved transparency of decisionmaking process
- Improved knowledge management
- Further process validation
- Integration into the ontology from Y1 **RiskSurve Project**

	Site Selection Model Review
м	IANUAL OF POLICIES AND PROCEDURES
C	ENTER FOR DRUG EVALUATION AND RESEARCH MAPP 5014.1 Rev. 1
	PROGRAM DESCRIPTION
	OFFICE OF PHARMACEUTICAL QUALITY
_	Understanding CDER's Risk-Based Site Selection Model
Worl	Table of Contents PURPOSE 1 BACKGROUND 3 POLICY 3 RESPONSIBILITIES 6 PROCEDURES 6 REFERENCES 8 DEFINITIONS 8 EFFECTIVE DATE 8 CHANGE CONTROL TABLE 9
work	k Stream Expected Results
	engths and Weaknesses of rrent approach
	aluation of possible additional etrics and aggregation logics

Update recommendations

Continuous Improvement

	Approach			
Continuous Improvement (Cl	වි			a the second
Companies are aiming at CI but sinuggies to foster CI in a regulated anvicoment. Xigning and bridging companies and regulators perspectives to overcome the challenge for CI in the pharmaceutical industry.	-1a Qualitative Analysis Interviews with comparies' on how they approach CI (e.g., barriers to CI (e.g., barriers to CI (e.g., barriers perception to CI in a regulated environment	 1b Quantitative Analysis – Perform a survey with companies' and assess the barriers, drivers and findings from interviews to quantitatively assess them 	Interpretation Continuition of company and regulators' perspectives Operationalization of CI in a pharmacsutical company and statistical analyses on factors driving CI	3 Consolidation Based on step 1a, 1b, and 2, detriving implications for FDA's site surveillance strateg and aligning QMM concept
	Expected Results			
		rt QMM concept that goes ce and facilitates CI in		tions on how to progress for the site surveillance

Work Stream Expected Results

- QMM facilitates continuous improvement in pharma industry
- Recommendation on how to overcome CI hurdles
- Refinement of predictive models
- Considerations of the integration of QMM into site surveillance strategy

Contact Details

Please do not hesitate to contact us if you have any questions

Prof. Dr. Thomas Friedli

Director Institute of Technology Management (ITEM-HSG)

Dufourstrasse 40a CH - 9000 St.Gallen

Matteo Bernasconi

Group Coordinator

matteo.bernasconi@unisg.ch
 +41 (0)71 224 72 71

AFDO RAPS HEALTHCARE PRODUCTS COLLABORATIVE

