

Artificial Intelligence Transparency and Explainability

Shawn Forest

Digital Health Specialist, FDA

Mike Salem

Associate Director of Data Science, Gilead Sciences

FDO HEALTHCARE PRODUCTS RAPS COLLABORATIVE

Transparency for Artificial Intelligence/ Machine Learning (AI/ML)-Enabled Medical Devices

Shawn Forrest Digital Health Specialist, Center for Devices & Radiological Health (CDRH) CDRH Digital Health Center of Excellence, US FDA

Outline

- Artificial Intelligence/ Machine Learning (AI/ML)-Enabled Medical Devices
- FDA AI/ML Action Plan
 - Good Machine Learning Practice
 - Transparency

Outline

- Artificial Intelligence/ Machine Learning (AI/ML)-Enabled Medical Devices
- FDA AI/ML Action Plan
 - Good Machine Learning Practice
 - Transparency

AI/ML-Enabled Medical Devices:

International Harmonization on Terminology

Artificial Intelligence (AI):

A branch of computer science, statistics, and engineering that uses algorithms or models to perform tasks and exhibit behaviors such as learning, making decisions and making predictions.

Machine Learning (ML):

A subset of AI that allows computer algorithms to learn through data, without being explicitly programmed, to perform a task.

AI/ML-Enabled Medical Device:

A medical device that uses machine learning to achieve its intended medical purpose.

Adapted from IMDRF Artificial Intelligence Medical Devices Key Terms & Definitions proposed document

FDA Resource on AI/ML-Enabled Medical Devices

Artificial Intelligence and Machine Learning (AI/ML)-Enabled Medical Devices

						Export Excer	
Date of Final Decision –	Submission Number	n ≑	Device	⇔	Company 🌲	Panel (Lead)	Primary Product Code 🗢
07/27/2023	<u>K231195</u>		Brainomix 360 Triage ICH		Brainomix Limited	Radiology	QAS
07/26/2023	<u>K231038</u>		Global Hypoperfusion Index (GHI) Algorithm		Edwards Lifesciences, LLC	Cardiovascular	QNL
07/25/2023	<u>K223473</u>		ME-APDS™; MAGENTIQ-COLO™		Magentiq Eye LTD	Gastroenterology/Urology	QNP
07/25/2023	<u>K230365</u>		Sonio Detect		Sonio	Radiology	IYN
07/25/2023	<u>K230913</u>		ANDI		lmeka Solutions, Inc.	Radiology	QIH
07/24/2023	<u>K223347</u>		UltraSight Al Guidance		UltraSight Inc	Radiology	QJU
07/21/2023	<u>K230150</u>		OptimMRI		RebrAln, SAS	Radiology	QIH
ER 14-16, 2023			s://www.fda.gov/medical-devices/softwa -machine-learning-aiml-enabled-medical			cial-intelligence-	RAPS PRODUC COLLAB

BORATIVE

Inspiring Collaboration. Leading Innovation. Making a difference

₹E

Show 50

entries

Export Excel

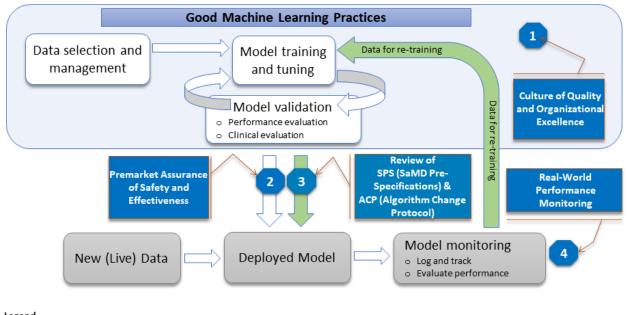
Al/ML-Enabled Medical Devices: Opportunities & Challenges

OPPORTUNITIES

- Significant positive impact on health care
 - Earlier disease detection
 - More accurate diagnosis
 - New insights into human physiology
 - Personalized diagnostics and therapeutics
- Applications across all medical fields
- Ability to learn, adapt, and improve performance

CHALLENGES

- Fit-for-purpose data sets for development and testing, including diversity
- Identification and minimization of bias
- Opacity of some algorithms
- Providing oversight for an adaptive system
- **Ensuring transparency to users**


Proposed Regulatory Framework for AI/ML-Enabled Device Software

CINCINNATI, OH • NOVEMBER 14–16, 2023

Overlay of FDA's TPLC Approach on Al/ML Workflow

Continuing our Collaborative Approach

2019	2020	2021	2022	2023
 Published <u>AI/ML-SaMD Discussion</u> <u>Paper</u> First joined <u>Collaborative Community</u> related to AI/ML 	 Public Workshop on <u>AI/ML in</u> <u>Radiological Imaging</u> Patient Engagement Advisory Committee Meeting on <u>Patient Trust</u> in <u>AI/ML Devices</u> 	 Published <u>AI/ML Medical Device</u> <u>Software Action Plan</u> Posted <u>List of Currently Marketed</u> <u>AI/ML Devices</u> Public Workshop on <u>Transparency of</u> <u>AI/ML Devices</u> Published <u>Good Machine Learning</u> <u>Practice Principles</u> 	 Contributed to IMDRF's <u>Key Terms & Definitions: Machine Learning Enabled Medical Devices</u> Published <u>Clinical Decision Support (CDS) Final Guidance</u> Updated <u>List of Currently Marketed AI/ML Devices</u> Recognized new <u>Consensus Standard on AI/ML</u> 	 Published <u>Predetermined Change</u> <u>Control Plan for AI/ML Devices Draft</u> <u>Guidance</u> Updated <u>List of Currently Marketed</u> <u>AI/ML Devices</u> Published <u>Pre-determined Change</u> <u>Control Plans for Machine Learning- Enabled Medical Devices Guiding</u> <u>Principles</u>

We recognize that by working collaboratively with stakeholders we can lay out a clear path toward building a proactive patient-centered approach to the development and use of AI/ML-enabled devices.

Outline

- Artificial Intelligence/ Machine Learning (AI/ML)-Enabled Medical Devices
- FDA AI/ML Action Plan
 - Good Machine Learning Practice
 - Transparency

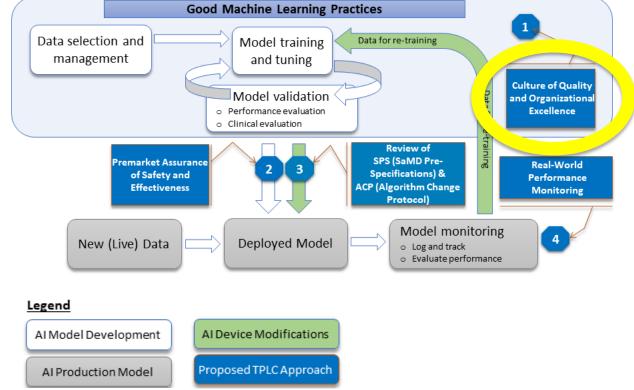
Stakeholder Feedback on Al/ML Approach

What we heard, and what we'll do

What we heard from stakeholders:

- 1. <u>Regulatory Framework</u>: Requested further development of proposed regulatory framework for AI/ML-based SaMD
- 2. <u>Good Machine Learning Practices (GMLP)</u>: Supported the idea of GMLP and the need for harmonization of its efforts
- 3. <u>**Transparency**</u>: Asked for further discussion with FDA on how these technologies interact with people, including transparency to users
- 4. <u>Regulatory Science</u>: Described need for improved methods related to algorithmic bias and robustness.
- 5. <u>Real-World Performance (RWP)</u>: Sought clarity on RWP monitoring for AI/ML software.

Stakeholder Feedback on AI/ML Approach


What we heard, and what we'll do

CINCINNATI, OH

What we heard from stakeholders:	What we'll do The AI/ML Action Plan:		
 Regulatory Framework: Requested further development of proposed regulatory framework for AI/ML-based SaMD 	 <u>Update the proposed AI/ML framework</u>, including through Guidance 		
2. <u>Good Machine Learning Practices (GMLP)</u> : Supported the idea of GMLP and the need for harmonization of its efforts	 Strengthen FDA's role in harmonizing GMLP through standards development & other initiatives 		
3. <u>Transparency</u> : Asked for further discussion with FDA on how these technologies interact with people, including transparency to users	 Foster a patient-centered approach, starting with a workshop on transparency to users 		
4. <u>Regulatory Science</u> : Described need for improved methods related to algorithmic bias and robustness.	4. Support development of regulatory science methods related to algorithm bias and robustness		
5. <u>Real-World Performance (RWP)</u> : Sought clarity on RWP monitoring for AI/ML software.	 Advance real-world performance pilots in coordination with stakeholders and other programs 		
	AFDO HEALTHCARE PRODUCTS		

- Accepted practices in ML/AI algorithm design, development, training, and testing that facilitate the quality development and assessment of ML/AIenabled devices
- Based on concepts from quality systems, software reliability, machine learning, and data analysis

Overlay of FDA's TPLC approach on AI/ML workflow

Adapted from Proposed Regulatory Framework for Artificial Intelligence/Machine Learning (AI/ML)-Based SaMD

FDA

Good Machine Learning Practice (GMLP) Guiding Principles

FDA

- Ten guiding principles issued by US FDA, MHRA (UK) and Health Canada
- Intended to help inform the development of GMLP and encourage broad stakeholder engagement
- Promotes global harmonization in efforts for the identification of best practices and the creation of standards
- Being considered by broader IMDRF international community

FOA U.S. FOO	D & DRUG	Health Santé Canada Canada	ines & Healthcare products atory Agency	
Good Machine L	Learning Practice	for Medical Device De	evelopment:	
	Guiding I	Principles		
	Octobe	er 2021		
The U.S. Food and Drug Administra	ation (FDA), Health Car	nada, and the United Kingdo	om's Medicines and	
Healthcare products Regulatory Ag	gency (MHRA) have joi	intly identified 10 guiding pr	inciples that can inform the	
development of Good Machine Lea	arning Practice (GMLP)). These guiding principles w	vill help promote safe,	
effective, and high-quality medical	devices that use artifi	cial intelligence and machin	e learning (Al/ML).	
Artificial intelligence and machine	learning technologies	have the potential to transf	orm health care by deriving	
new and important insights from ti	-			
They use software algorithms to le	arn from real-world us	se and in some situations m	ay use this information to	
improve the product's performance	e. But they also preser	nt unique considerations du	e to their complexity and the	
iterative and data-driven nature of	their development.	Good Machine Learning Practic Guildin	is for Medical Device Development; g Principles	
These 10 guiding principles are into	ended to lay the	Multi-Disciplinary Expertise is Leveraged	Good Software Engineering and Security Practices Are Implemented	
foundation for developing Good M		Clinical Study Participants and Data Sets Are	Training Data Sets Are independent of Text Sets	
Practice that addresses the unique	nature of these	Population Selected Reference Datasets Are Revel	Model Design is Tailored to the Available Data	
products. They will also help cultivate future growth in		Upon Best Available Methods	and Reflects the intended Use of the Device Texting Demonstrates Device Performance	
this rapidly progressing field.		Focus is Placed on the Performance of the Human Al Team	During Clinically Relevant Conditions	
The 10 guiding principles identify a	man where the	Users Are Provided Clear, Essential Information	Deployed Models Are Munitored for Performance and Re training Risks are Managed	
International Medical Device Regul		international standards ore	vanizations and other	
collaborative bodies could work to				
tools and resources, international l				
policies and regulatory guidelines.				
We envision these guiding principle	es may be used to:			
 Adopt good practices that Tailor practices from other 			logy and the health care	
 Tailor practices from other sectors so they are applicable to medical technology and the health care sector 				
	ific for medical techno	logy and the health care sec	tor	
As the AI/ML medical device field e				
partnerships with our international public health partners will be crucial if we are to empower stakeholders to advance responsible innovations in this area. Thus, we expect this initial collaborative work can inform our				
broader international engagement				
brouder international engagement				
We welcome your continued feedb	hack through the public	c docket (FDA-2019-N-1195	at Regulations gov and we	

Medicines & Healthcare products Regulatory Agency

Good Machine Learning Practice for Medical Device Development:

Guiding Principles

Multi-Disciplinary Expertise Is Leveraged	Good Software Engineering and Security			
Throughout the Total Product Life Cycle	Practices Are Implemented			
Clinical Study Participants and Data Sets Are Representative of the Intended Patient Population	Training Data Sets Are Independent of Test Sets			
Selected Reference Datasets Are Based	Model Design Is Tailored to the Available Data			
Upon Best Available Methods	and Reflects the Intended Use of the Device			
Focus Is Placed on the Performance of the	Testing Demonstrates Device Performance			
Human-Al Team	During Clinically Relevant Conditions			
Users Are Provided Clear, Essential	Deployed Models Are Monitored for			
Information	Performance and Re-training Risks are Managed			

https://www.fda.gov/medical-devices/software-medical-device-samd/good-machine-learning-practice-medical-device-development-guiding-principles

Good Machine Learning Practice (GMLP) Guiding Principles

Principle 7

Focus Is Placed on the Performance of the Human-Al Team

 Where the model has a "human in the loop," human factors considerations and the human interpretability of the model outputs are addressed with emphasis on the performance of the Human-AI team, rather than just the performance of the model in isolation.

Good Machine Learning Practice (GMLP) Guiding Principles

Principle 9

Users Are Provided Clear, Essential Information:

- Users are provided ready access to clear, contextually relevant information that is appropriate for the intended audience (such as health care providers or patients) including:
 - the product's intended use and indications for use,
 - performance of the model for appropriate subgroups,
 - characteristics of the data used to train and test the model,
 - acceptable inputs,
 - known limitations,
 - user interface interpretation,
 - and clinical workflow integration of the model.
- Users are also made aware of device modifications and updates from real-world performance monitoring, the basis for decision-making when available, and a means to communicate product concerns to the developer.

Patient-Centered Approach Incorporating Transparency to Users

AI/ML-enabled devices have unique considerations that necessitate a proactive patient-centered approach:

- that takes into account issues including usability, equity, trust, and accountability
- that promotes transparency to all users and to patients more broadly

Patient Engagement Advisory Committee (PEAC) Meeting held Oct 2020

Workshop on Transparency of AIMLenabled devices held Oct 2021

Working Definition

TRANSPARENCY:

Degree to which appropriate information about a device

- including its intended use, development,

performance, and, when available, logic -

is clearly communicated to stakeholders

*Working definition of Transparency adapted from ISO/IEC 25059:2023 Software engineering — Systems and software Quality Requirements and Evaluation (SQuaRE) — Quality model for AI systems

Transparency is fundamental to a patient-centered approach

Transparency supports the safe and effective use of AI/ML-enabled devices

- 1. Allows patients, providers, and caregivers to make informed decisions
- 2. Supports proper use of a device
- 3. Promotes health equity
- 4. Facilitates evaluation and monitoring of device performance
- 5. Fosters trust and promotes adoption

Continuing to Improve Transparency

- What are the needs of specific stakeholders?
- What is the appropriate information to communicate?
- What is the best way to communicate that information?
 - How can device labeling be improved?
 - How can other public-facing information be improved?
 - What else can be done to promote transparency?

We carefully consider the discussions held in our public workshop on the Transparency of AI/MLenabled Medical Devices, as well as comments from the public docket to inform our next steps toward improving transparency.

Transparency Workshop

- 3800 workshop participants
 - Patients, healthcare professionals, academia, advocacy groups, and industry
- Discussion Themes (Workshop and Docket)
 - Health equity and bias
 - Labeling
 - Public education efforts
 - Decision summaries
 - Databases
 - Post market pathways
 - Real world performance monitoring
 - Industry guidance

- Data set requirements
- Validation of transparency measures
- Promoting GMLP

Topics of AI/ML Transparency Workshop Discussion

What does AI/ML Transparency mean?

- Safe and effective
 - Clear intended use
 - Works as described
- Health equity
 - Fair to all people
 - Bias management
- Real world performance
 - Assurance of improved health outcomes

How to promote AI/ML Transparency?

- User facing information/ labeling
 - Accessible language/terminology
 - Clear functionality and limitations
- Public education on AI/ML
- Dataset requirements
- Pre-market guidance
- Post-market monitoring

Planned Guidance

A-List: Prioritized Guidance Documents that CDRH Intends to Publish in FY2024

Final Guidance Topics

 Marketing Submission Recommendations for A Predetermined Change Control Plan for Artificial Intelligence/Machine Learning (AI/ML)-Enabled Device Software Functions

Draft Guidance Topics

 Artificial Intelligence/Machine Learning (AI/ML)-enabled Device Software Functions: Lifecycle Management Considerations and Premarket Submission Recommendations

https://www.fda.gov/medical-devices/guidance-documents-medical-devices-and-radiation-emitting-products/cdrh-proposed-guidances-fiscal-year-2024fy2024#a

Continuing our Collaborative Approach

2019	2020	2021	2022	2023
 Published <u>AI/ML-SaMD Discussion</u> <u>Paper</u> First joined <u>Collaborative Community</u> related to AI/ML 	 Public Workshop on <u>AI/ML in</u> <u>Radiological Imaging</u> Patient Engagement Advisory Committee Meeting on <u>Patient Trust</u> in <u>AI/ML Devices</u> 	 Published <u>AI/ML Medical Device</u> <u>Software Action Plan</u> Posted <u>List of Currently Marketed</u> <u>AI/ML Devices</u> Public Workshop on <u>Transparency of</u> <u>AI/ML Devices</u> Published <u>Good Machine Learning</u> <u>Practice Principles</u> 	 Contributed to IMDRF's <u>Key Terms & Definitions: Machine Learning Enabled Medical Devices</u> Published <u>Clinical Decision Support (CDS) Final Guidance</u> Updated <u>List of Currently Marketed AI/ML Devices</u> Recognized new <u>Consensus Standard on AI/ML</u> 	 Published <u>Predetermined Change</u> <u>Control Plan for AI/ML Devices Draft</u> <u>Guidance</u> Updated <u>List of Currently Marketed</u> <u>AI/ML Devices</u> Published <u>Pre-determined Change</u> <u>Control Plans for Machine Learning- Enabled Medical Devices Guiding</u> <u>Principles</u>

We recognize that by working collaboratively with stakeholders we can lay out a clear path toward building a proactive patient-centered approach to the development and use of AI/ML-enabled devices.

Further Questions or Feedback:

www.fda.gov/digitalhealth

DigitalHealth@fda.hhs.gov

Shawn Forrest

CDRH Digital Health Center of Excellence Office of Strategic Partnerships & Technology Innovation (OST) Center for Devices and Radiological Health (CDRH), U.S. Food and Drug Administration <u>shawn.forrest@fda.hhs.gov</u>

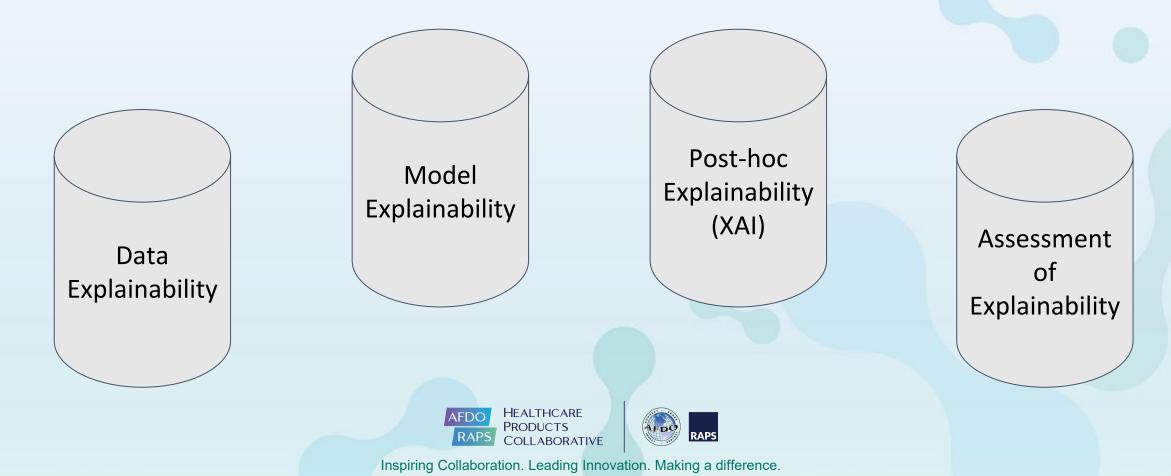
Inspiring Collaboration. Leading Innovation. Making a difference.

RAPS

Utilizing AI for health and patient safety

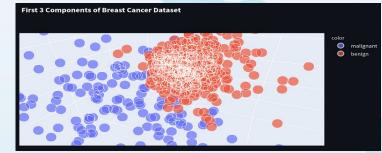
Data science teams should strive to build and develop AI models that positively impact patient lives by providing information and decisions that are trustworthy and transparent.

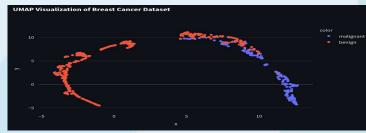
If there is a lack of transparency, data teams will be less likely to interpret the results, and stakeholders may begin to question the usefulness of models without justification.

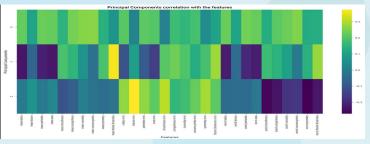

Being well versed in model transparency and explainable AI (XAI) will help data teams interpret the results while helping stakeholders build confidence in model outputs.

> AFDO HEALTHCARE PRODUCTS COLLABORATIVE

Model transparency is built on the four pillars of explainable AI (XAI)






How well do you know your data? (Data Explainability)

Statistical Analysis:

- Exploratory Data Analysis (EDA)
- Feature Engineering
- Physics Informed Neural Networks
- Data Dimensionality Reduction / Visualization:
 - Principal Component Analysis (PCA)
 - t-distributed Stochastic Neighbor Embedding (TSNE)
 - Uniform Manifold Approximation and Projection (UMAP)
- Causal / Relationship Mapping:
 - Knowledge Graphs

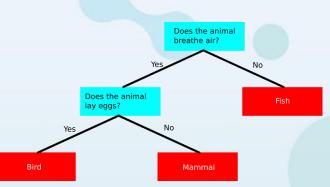
Inspiring Collaboration. Leading Innovation. Making a difference.

COLLABORATIVE

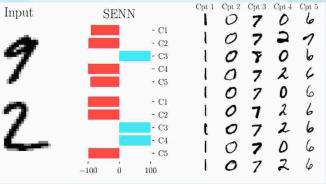
How well do you know your model(s)? (Model Explainability)

White Box Models - Usually basic and don't capture complexity

- Decision sets
- Rule Sets
- Cased-based reasoning
- Interpretable Fuzzy Systems
- Generalized Additive Models


Hybrid Explainable Models – Models coupled with black box models

- Deep K-Nearest Neighbors (DkNN)
- Deep Weighted Averaging Classifier (DWAC)
- Self-Explaining Neural Networks (SENN)
- BagNets
- Neural-Symbolic models (NeSy)


APS HEALTHCARE PRODUCTS COLLABORATIVE

Inspiring Collaboration. Leading Innovation. Making a difference.

https://towardsdatascience.com/a-beginners-guide-to-decision-tree-classification 6d3209353ea

https://omarelb.github.io/self-explaining-neuralnetworks

Attribution Methods

Attribution Methods are great for understanding image explanations by looking at relevant pixels

Four Methods:

- Deep Taylor Decomposition (DTD)
- Perturbation Methods
- Backpropagation Methods
- DeepLIFT

Method: Grad-CAM

AFDO RAPS HEALTHCARE PRODUCTS COLLABORATIVE

Predicted: Ox

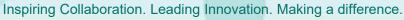
Visualization Methods

Visualizations work well with supervised learning methods by understanding feature contributions

Three Methods:

- Partial Dependence Plot (PDP)
- Individual Conditional Expectations (ICE)
- Accumulated Local Effects (ALE)

RAPS HEALTHCARE PRODUCTS COLLABORATIVE

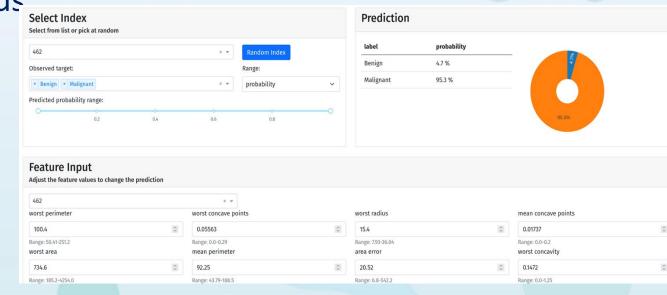


pdp plot for worst perimeter

Description

Partial Dependence Plot

The partial dependence plot (pdp) show how the model prediction would change if you change one particular feature. The plot shows you a sample of observations and how these observations would change with this feature (gridlines). The average effect is shown in grey. The effect of changing the feature for a single Index is shown in blue. You can adjust how many observations to sample for the average, how many gridlines to show, and how many points along the x-axis to calculate model predictions for (gridpoints).



Example-based Explanation Methods

Example-based Explanation Methods focus on single instances in the dataset to explain the underlying data distributions.

Three Methods:

- Prototype and Criticisms
- Counterfactuals
- Adversarial Examples

FDO HEALTHCARE PRODUCTS RAPS COLLABORATIVE

Shan Summar

Game Theory Methods

Game Theory Methods treat machine learning models like games where the features show how much they contribute to the prediction outcome

Two Methods:

- Shap Values
- Shapley Additive Explanation (SHAP)

AFDO HEALTHCARE PRODUCTS RAPS COLLABORATIVE

verage impact on predicted to

Knowledge Extraction Methods and Neural Methods

Knowledge Extraction Methods and Neural Methods look to see what features are being used by a neural network features:

Four Methods:

- Rule Extraction
- Model Distillation
- Influence Methods
- Concept Methods

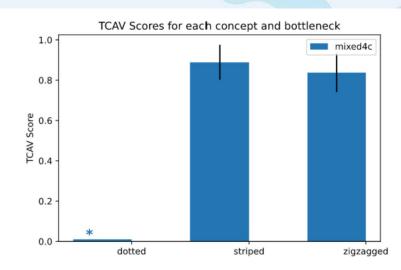


FIGURE 10.11: The example of measuring TCAV scores of three concepts for the model predicting "zebra". The targeted bottleneck is a layer called "mixed4c". A star sign above "dotted" indicates that "dotted" has not passed the statistical significance test, i.e. having the p-value larger than 0.05. Both "striped" and "zigzagged" have passed the test, and both concepts are useful for the model to identify "zebra" images according to TCAV. Figure originally from the TCAV GitHub.

https://christophm.github.io/interpretable-ml-book/detecting-concepts.html

APS HEALTHCARE PRODUCTS COLLABORATIVE

How well do you understand the results? (Assessment of Explanations)

- Understandability and Satisfaction
 - Qualitative approaches
 - Explain the answer provided
 - Quantitative approaches
 - Rate the explanation of the answer / result (Likert Scales)
- Trust and Transparency
 - Swift Trust The user immediately accepts the model's output
 - Default Trust The user depends on the model's output
 - Suspicious Trust The user has apprehension to the model's output

AFDO RAPS HEALTHCARE PRODUCTS COLLABORATIVE

XAI in action!

Auto-EDA

XAI Dashboard

Visualizations

GRAD-CAM

AFDO HEALTHCARE PRODUCTS COLLABORATIVE

