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Over a decade ago, Marc Andreessen had a provocative idea: software is eating the 
world
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https://www.scalevp.com/blog/investing-in-the-cloud-from-gold-rush-to-hunger-games-and-beyond 

Having been involved in automation my entire career, I think this blog post is more 
accurate::  automation – powered by algorithms - is in fact how software has been 
eating the world:  automation of some or all aspects of billions of sense-decide-act 
feedback loops, from car cruise controllers to home thermostats to aircraft autopilots 
to chemical plant control systems.

From this, I posit that algorithms are the apex predators of the software that’s eating 
the world.  What are the implications?
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I’ll be focusing on automation algorithms, not AI / ML in particular  for two reasons.

One, I’m not an expert in the AI / ML

Two, automation algorithms have been around a long time – all the way back to the 
flywheel governor of James Watt’s steam engine, or the automation of the job of this 
man sitting on a one-legged stool to monitor temperature in an explosives plant.  
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Automobile Cruise Control

Home Thermostat

Refinery Control System

Aircraft Autopilot

From: To:

Purpose of automation: to transfer variability from a place where it 
hurts (the sensor) to a place where it doesn’t hurt as much (the 
actuator) so that humans don’t have to do as much work

As I was taught in grad school three decades ago, the purpose of automation is to 
safely transfer variability from a place where it hurts (the sensor) to a place where it 
doesn’t hurt as much (the actuator), so that we don’t have to do as much work.

Consider a car’s cruise control:  it transfers variation in speed to variation in fuel 
consumption.  So whether we’re going up or down a hill, or have a headwind or 
tailwind, we just want to drive 65 and don’t care if we’re using a little more or less fuel 
to do so.  We don’t have to do as much work.
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Cyberphysical Systems
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Flixborough, England,1974

• A 20” temporary 
pipe failed 

• 40 of 120 tons of 
cyclohexane 
escaped

• The vapor cloud 
ignited (35 tons TNT 
equivalent)

• 28 people were 
killed and 36 were 
seriously injured

• Site was destroyed

• The fire burned for 
10 days

This cyclohexanone plant blew up 1974, killing 28 people. A key learning from this 
accident is that they kept too much inventory in the process unit, which is why it 
burned for 10 days.  “That which you do not have, doesn’t not explode.”  

In the 1970’s these plants were largely under manual or primitive electro-mechanical 
control.  Nowadays they’re all controlled by computers, often from offsite control 
rooms (outside of the blast radius).



Petrochemical plant control is an example of a cyberphysical system.  The cyber 
interacts with the physical.  The physical involves potentially large and dangerous 
amounts energy.  Software is no longer a harmless mental abstraction.  Software 
algorithms control large amounts of energy.  Potential and kinetic energy of aircraft 
and automobiles.  Thermal energy of homes and power plants. Chemical energy of 
petrochemical plants.  Electromagnetic energy of power plants.
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My first cyberphysical system was the automation of a pump cable test lab, while I was 
still in undergrad.
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Here you can see the cutting edge printer, data acquisition, and compute platform I 
built in 1988.  This home-grown SCADA system used PID feedback control algorithms 
to control pressure and temperature in vessels simulating downhole conditions in an 
oilwell.  Today a $5 Raspberry PI is 100 times more powerful

11



This is the Nova Chemicals Petrochemical complex in Joffre, Alberta, Canada where I 
worked after grad school.  With three ethylene plants, two polyethylene plants, a 
linear alpha olefins plant, and a hydrogen offgas plant, it’s one of the largest facilities 
of its type in the world.
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6,000,000,000
5,000
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This plant is big.  How big?  6 billion pounds of ethylene per year.  5000 control loops.  
All supervised by about 15 control room operators.
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• Process Modeling

• Basic Control

• Advanced Control

• Statistical Data Analysis

• Operations Support

• Human-Machine Interfaces

• Real Time Optimization

• Control System Modernization

This plant is a good example of a continuous process industry facility.   It was a great 
place for me to learn about automation.  During my time at Nova, one of the big 
projects I worked on was the modernization of the control system at one of the 
ethylene plants.
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From Nova I moved to Honeywell and later to General Electric, spending fifteen years 
implementing and remotely monitoring automation all over the world.  From the oil 
sands of Alberta …
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To the savannahs of South Africa …



To the jungles of Brazil …

17



To South Korea and the largest single site oil refinery in the world
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To the front-end of the US nuclear supply chain …
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Thousands of feed underground in mines …
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Perhaps a hundred control rooms. 
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Australia, Brazil, Britain, Canada, France, Germany, Hungary, India, Japan, Korea, Malaysia, 
Mexico, Singapore, South Africa, Switzerland, United States

I really can’t imagine a better career.  I was very lucky.



Background

Domain Topic Location

Control Loops Minimum Variance Benchmarking Queen’s University

Ethylene Plant Pyrolysis Furnace Runtime Nova Chemicals

Density-Enthalpy Compensation Flow measurement Nova Chemicals

Control Loops, Alarms Monitoring and Diagnostics Honeywell Process Solutions

Gasoline Blending Planning, Scheduling, Advanced Control Honeywell Process Solutions

Gas Turbine Power Plants Remote Monitoring and Diagnosis General Electric 

Transformers Health Monitoring General Electric

These are some of the cyberphysical system algorithm projects I worked on for the first 
two decades of my career.  Note all of these are industrial projects at commercial 
scale.  
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Data
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Good Designs 
 → Good Experiments 
  → Good Data 
   → Good Predictions 
    → Good Controllers 
     →  Good Outcomes

Queen’s CHEE-825* System Identification
The course focuses on the theory and application of linear time series methods for system identification. Time domain and frequency 
domain methods for analyzing dynamic data will be presented. Standard process plus disturbance models encountered in the 
identification literature will be investigated from both statistical and physical perspectives. Methods for structural identification, 
incorporation of exogenous variables, parameter estimation, inference and model adequacy will be examined in detail. The design of 
dynamic experiments and incorporation of model uncertainty into the intended model and use, such as prediction or control, will be 
discussed. Assignments will include the analysis of industrial data sets. Dynamic modeling using neural networks and nonlinear time series 
methods will be introduced. 

While working at Honeywell, I was asked to provide training for the other engineers on 
the challenges and opportunities associated with turning data into action.  How do you 
collect high quality data to develop high quality algorithms for use in controlling 
complex petrochemical processes?  This course was later turned into a grad school 
course.

There are many pitfalls on the path to turning data into action.  Let’s review a few.
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Experimentation is slow, difficult, and dangerous

It is difficult, time consuming, expensive, and sometimes even unethical to perform 
experiments to get good data.  The data generated by these experiments is often 
messy, hard to replicate, and has many other problems.  This propagates to poor 
models, poor outcomes.

“The biggest mistakes are made on the first day of the project”.  This is exactly the case 
here: poorly designed experiments – or worse, just using data that’s laying around – 
will usually yield poor quality data.  It all goes downhill from there.  Garbage In, 
Garbage Out.
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https://pluralistic.net/2023/07/26/dictators-dilemma/ 

https://memex.craphound.com/2018/05/29/garbage-in-garbage-out-machine-learning-has-not-repealed-
the-iron-law-of-computer-science/ 

Quick segue:  garbage in, garbage out is still a problem with AI / ML algorithms.  As 
noted by Cory Doctorow, “When it comes to "AI" that's used for decision support – 
that is, when an algorithm tells humans what to do and they do it – then you get 
something worse than Garbage In, Garbage Out – you get Garbage In, Garbage Out, 
Garbage Back In Again. That's when the AI spits out something wrong, and then 
another AI sucks up that wrong conclusion and uses it to generate more conclusions.”
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Experimentation is slow, difficult, and dangerous

Dynamic System 
Experimentation 

maximize variation in the controlled variable 
for learning;  carefully design perturbations 

of the manipulated and disturbance variables

Dynamic System 
Closed Loop Control

minimize variation in the controlled variable; 
use feedback / feedforward signals to 

perturb manipulated variable

Ok back to the problems with data and experiments.  Here’s a specific challenge:  
experiments designed to yield maximum information content are often unsafe, while 
safe operation of a feedback control algorithm provides low information content.  The 
objectives are diametrically opposed.  This is why one should be very careful when 
offered closed loop data from which to build models / algorithms.  
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Experimentation is slow, difficult, and dangerous

Dynamic System 
Experimentation 

maximize variation in the controlled variable 
for learning;  carefully design perturbations 

of the manipulated and disturbance variables

Dynamic System 
Closed Loop Control

minimize variation in the controlled variable; 
use feedback / feedforward signals to 

perturb manipulated variable

Stated simply, you learn more by poking a lion than by watching one in a zoo.  But 
poking is dangerous.
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More ≠ Better

Myung, Jay I., Yun Tang, and Mark A. Pitt. "Evaluation 
and comparison of computational models." Methods 
in enzymology 454 (2009): 287-304.

Once you’ve got data, there are many statistical perils with building algorithms.  I hope 
it is clear that more complexity is not necessarily better; that complexity does not 
automatically confer goodness.
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Shmueli, “To Explain or To Predict” (2010)

“We note that the practice in 
applied research of concluding 
that a model with a higher 
predictive validity is “truer,” is 
not a valid inference.  This paper 
shows that a parsimonious but 
less true model can have a 
higher predictive validity than a 
truer but less parsimonious 
model.”

https://projecteuclid.org/journals/statistical-science/volume-25/issue-3/To-Explain-or-to-Predict/10.1214/10-STS330.full 

In fact in this awesome paper, the circumstances in which a simple model performs 
better than a complex one are made very clear.  The paper also highlights the 
importance of understanding an algorithms “context of use”.  Is it used for prediction 
or explanation?  Or in the case of a feedback control algorithm, is it used for setpoint 
tracking or disturbance rejection?  It’s important to have deep understanding of the 
problem the algorithm is trying to solve.
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With enough data you can p-hack a data smoothie
With enough data you can p-hack a data smoothie

• If you’re going to make a 
data smoothie, you’ll need 
lots of dataa (tall, wide)

• If your data is heavy-tailed, 
you’ll need even more of it

• Can your data smoothie:
• predict?
• scale?
• be supervised?
• be supported?
• be regulated?
• be trusted?

Random 
Forest

Deep
Learning

K-Nearest
Neighbor

This is all to say that blind application of the latest methods to blobs of data that 
happen to be laying around may not yield good outcomes.  
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Wu, R. and Keogh, E., 2021. Current time series anomaly detection benchmarks are flawed and are 
creating the illusion of progress. IEEE Transactions on Knowledge and Data Engineering.

https://kdd-milets.github.io/milets2021/slides/Irrational%20Exuberance_Eammon_Keogh.pdf 
https://www.youtube.com/watch?v=Vg1p3DouX8w 

Eammon
Keogh

Before embracing the latest algorithms, I think it’s worth examining if simple 
algorithms can do the job.

I’ve been a fan of Dr. Eamonn Keogh for two decades.  We both value simplicity.  He 
recently published some insights on data and benchmarks used in anomaly detection.

He provides compelling examples of one line algorithms which do as good or better 
than contemporary methods.
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Human Factors
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Feedback algorithms automate tasks

Manual Control

Full Automation

Human

Computer

Act

“THING”

Sense

Decide

O’Neill, T., McNeese, N., Barron, A. and Schelble, B., 2022. Human–
autonomy teaming: A review and analysis of the empirical 
literature. Human factors, 64(5), pp.904-938.

We build and deploy algorithms to help humans transfer and manage variation in their 
environment.

Feedback works this way: we sense something with a sensor, we decide what to do 
with a control algorithm, and we perform an action with an actuator or final control 
element, thereby affecting the thing being controlled. Sense, decide, act.   Closing the 
loop.  Feedback control.

What is often missed is that each of these tasks – sensing, deciding, acting -  can be 
performed by a human, a computer, or a combination.  There are “levels of 
automation” ranging from “full human control” to “full automation”.
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Automation adds new tasks

• Supervision

• Troubleshooting

• System maintenance

Act

“THING”

Sense

Decide

Supervise

In addition, many miss the fact that new tasks are added with automation.  Some of 
these tasks are quite difficult.  Supervising the automation.  Troubleshooting the 
automation when it has a problem.  Performing maintenance on the automation.  

Automation shifts the user from being “in the loop” to being “on the loop”, or worse to 
being “out of the loop”
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Abnormal Situation Management®

Joint Research and Development Consortium

www.asmconsortium.com

40%

40%

20%

Process

People

Equipment

In the late 80’s a series of major incidents – petrochemical plants blowing up – led to 
the realization that human factors was a major cause of accidents.  The Abnormal 
Situation Management Consortium was formed by the major oil companies, with 
Honeywell as the “industrial anchor” / “technology provider”.  The ASM Consortium 
still exists today.  I was privileged to be a part of this consortium for fifteen years.
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There’s a joke that the plant of the future will be so automated that it will have one 
human and one dog. 
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The human’s job is to feed the dog, and the dog’s job is to keep the human from 
touching anything.
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Automation Human Factors

Dogs won’t be controlling chemical plants or driving cars or flying airplanes any time 
soon.  Humans will still be interacting with automation to control safety-critical 
cyberphysical systems for the conceivable future. 

We still need humans.   Therefor there’s much we can learn from and apply across 
seemingly disparate domains.  
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Task Allocation

Humans are good at:

• “Recognition”

• Pattern recognition

• Troubleshooting

• New situations

Computers are good at:

• “Cognition”

• Vigilance / repetitive tasks

• Fast response to defined situations

• Automated procedures

“Blink” “Think”

• High cognitive load from supervisory task 

• Automation-induced complacency 

• Brittleness (opposite of resiliency)

• Mistrust of automation

• Erosion of expertise and engagement

Improper task allocation between 
the human and automation may 
result in:

For example: properly allocating tasks is critically important when considering 
automation.  The human has information about the past, present, and future which is 
unavailable to the computer.  The human has five senses.  The human can deal with 
the novel.  On the flipside, the computer never gets bored.  It will do the same thing 
the same way, over and over again.



Automated Systems that are Strong, Silent, Clumsy, and Difficult 
to Direct are not Team Players

1. strong when they can act autonomously

2. silent when they provide poor feedback about their activities and 
intentions

3. clumsy when they interrupt their human partners during high workload, 
high criticality periods or add new mental burdens during these high 
tempo periods

4. difficult to direct when it is costly for the human supervisor to instruct the 
automation about how to change as circumstances change

Woods, D.D., 2018. Decomposing automation: Apparent simplicity, real complexity. 
In Automation and human performance (pp. 3-17). CRC Press.

Systems with these characteristics create new problems for their human partners and 
new forms of system failure.  The human and the automation must have knowledge of 
each others’ intent.  
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Automation and Safety Forum 02, 03 June 2015 Brussels: Findings and Conclusions https://www.skybrary.aero/bookshelf/books/3105.pdf
Nancy Leveson, “Engineering a Safer World”; American Airlines, “Children of the Magenta”; David Mindell, “Our Robots, Ourselves”; Some Lessons 
Learned About Flight Deck Automated Systems, Kathy Abbott, PhD, FRAeS Federal Aviation Administration 2 June 2015, 
https://www.skybrary.aero/bookshelf/books/3094.pdf; Levels of Automation Advantages & Disadvantages, 
https://www.skybrary.aero/bookshelf/books/3120.pdf 

“Acts of Commission”
Task Saturation, Brittleness, Mode Confusion, Loss 

of Situational Awareness
Use of automated systems may add complexity 

and workload during demanding situations

“Acts of Omission”
Deskilling, Miscalibrated Trust, 

Complacency, Addiction
Lack of practice can result in degradation 

of basic knowledge and skills

Automation is not a 
panacea: it introduces 
new challenges for the 
humans responsible for 

supervising, 
troubleshooting, and 

maintaining the system

When humans are removed from the loop, bad things can happen.  They become 
deskilled.  They become complacent or even addicted to the automation, to the point 
where they are afraid to turn it off and take over control.  They may over- or under-
trust the automation.  

And worst of all, during critical situations they can get distracted and overwhelmed, 
unable to re-insert themselves into the loop and make the necessary control or 
maintenance actions to save the day.
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Confusion, Trust, VigilanceConfusion, Miscalibrated Trust, Vigilance
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1. Sarter, N.B. and Woods, D.D., 1995. How in the world did we ever get into that mode? Mode error and awareness in supervisory control. Human factors, 37(1), 
pp.5-19.

2. Jamieson, G.A. and Vicente, K.J., 2005. Designing Effective Human-Automation-Plant Interfaces: A Control-Theoretic Perspective. Human Factors, 47(1), p.12.
3. Sheridan, T.B. and Parasuraman, R., 2005. Human-automation interaction. Reviews of human factors and ergonomics, 1(1), pp.89-129.
4. Hancock, P.A., Billings, D.R., Schaefer, K.E., Chen, J.Y., De Visser, E.J. and Parasuraman, R., 2011. A meta-analysis of factors affecting trust in human-robot 

interaction. Human factors, 53(5), pp.517-527.
5. Lee, J.D. and See, K.A., 2004. Trust in automation: Designing for appropriate reliance. Human factors, 46(1), pp.50-80.
6. Shneiderman, B., 2016. Opinion: The dangers of faulty, biased, or malicious algorithms requires independent oversight. Proceedings of the National Academy of 

Sciences, 113(48), pp.13538
7. Leveson, N.G., 2016. Engineering a safer world: Systems thinking applied to safety (p. 560). The MIT Press.

Why?

1. opacity - poor display of 
automation state 

2. complexity - unnecessarily 
complex automation 

3. incorrect mental model – 
misunderstanding the 
behavior of the automation

Users ask the same questions:

1. “What is it doing now?” 

2. “Why is it doing that?” 

3. “What will it do next?” 

4. “How in the world did we get into this 
mode?” 

In cockpits, oil refinery control rooms, and other cyberphysical systems, users – pilots, 
operators – often find themselves confused by what the automation algorithms are 
doing.  They ask the same questions, often at the worst possible time, i.e. when the 
automation has given up and handed control back to the user.  “I don’t know how to 
fly the plane anymore.  Here, you take it.”  All of these issues can be addressed by 
proper design.
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Multivariable Early Event Detection

1

2

3

4

5

6

good

bad

One facility went to great lengths to develop a principle component analysis-based 
early event detector for one of its unit operations.  A radar plot display was developed 
for the operator.  During abnormal operation it went from good to bad.  The operators 
called it the sphincter plot because it provided no directly actionable information, only 
an indication that something was wrong, better buckle up.  As the operators said, “it 
blows a lot of smoke but doesn’t show the source of the draft”.
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Methods, Tools, Practices

Over the next few minutes I’m going to share some specific methods, tools, and 
practices from automation algorithms in cyberphysical systems.
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Rich system identification / parameter estimation 
literature in chemical engineering process control

1. Estimating Parameters and Model Uncertainty in Fundamental Dynamic Models Using Historical Data, KB McAuley, H Karimi, 2018 AIChE Annual Meeting

2. A maximum-likelihood method for estimating parameters, stochastic disturbance intensities and measurement noise variances in nonlinear dynamic models with 
process disturbances, H Karimi, KB McAuley, Computers & chemical engineering 67, 178-198

3. An approximate expectation maximization algorithm for estimating parameters, noise variances, and stochastic disturbance intensities in nonlinear dynamic models, H 
Karimi, KB McAuley, Industrial & Engineering Chemistry Research 52 (51), 18303-18323

4. Selection of optimal parameter set using estimability analysis and MSE-based model-selection criterion, S Wu, KAP McLean, TJ Harris, KB McAuley, International 
Journal of Advanced Mechatronic Systems 3 (3), 188-197

5. Parameter estimation in nonlinear continuous-time dynamic models with modeling errors and process disturbances, MS Varziri

6. Selecting parameters to estimate to obtain the best model predictions, KB McAuley, S Wu, TJ Harris, Proceedings of the 2010 International Conference on modeling

7. Mean-squared-error methods for selecting optimal parameter subsets for estimation, KAP McLean, S Wu, KB McAuley, Industrial & engineering chemistry research 51 
(17), 6105-6115

8. Mathematical modeling of chemical processes—obtaining the best model predictions and parameter estimates using identifiability and estimability procedures, KAP 
McLean, KB McAuley, The Canadian Journal of Chemical Engineering 90 (2), 351-366

9. Selection of simplified models: I. Analysis of model‐selection criteria using mean‐squared error, S Wu, KB McAuley, TJ Harris, The Canadian Journal of Chemical 
Engineering 89 (1), 148-158

10. Selection of simplified models: II. Development of a model selection criterion based on mean squared error, S Wu, KB McAuley, TJ Harris, The Canadian Journal of 
Chemical Engineering 89 (2), 325-336

11. Mathematical model for a point-of-care sensor for measuring carbon dioxide in blood, XL Li, H Karimi, PJ McLellan, KB McAuley, C Jeffrey, Sensors and Actuators B: 
Chemical 236, 635-645

Chemical engineers like me have been dealing with large volumes of mostly time series 
data for a very long time.  We turn that data into a variety of data products.  A 
substantial literature exists.
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https://downloads.regulations.gov/FDA-2021-D-0996-0004/attachment_3.pdf 

https://www.regulations.gov/document/FDA-2021-D-0996-0001 

There is a narrow but deep pool of automation human factors research amassed 
across other domains.  I’ve posted a summary of this as feedback to the upcoming FDA 
PCLC guidance.
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V&V Methods

Kapinski, J., Deshmukh, J.V., Jin, X., Ito, H. and Butts, K., 2016. Simulation-based approaches for 
verification of embedded control systems: An overview of traditional and advanced modeling, 
testing, and verification techniques. IEEE Control Systems Magazine, 36(6), pp.45-64.

• Simulation

• Falsification

• Formal methods

• Concolic Testing

In other industries such as automotive and aviation, commercial reach exceeded 
technical grasp.  Engineers had no choice but to develop new methods to characterize 
these complexly interactive systems.  Here’s an outstanding paper from Toyota.
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Dr. Nancy Leveson, MIT

1. Software does not “fail”

2. The role of software in accidents 
almost always involves flawed 
requirements

3. Software allows almost unlimited 
system complexity

4. Software changes the role of humans 
in systems

https://direct.mit.edu/books/book/2908/Engineeri
ng-a-Safer-WorldSystems-Thinking-Applied http://psas.scripts.mit.edu/home/ 

Dr. Nancy Leveson has been studying cyberphysical systems for decades.  
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Her methods such as STPA are widely used.
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smoothed += ((0.7 * smoothed) + (0.3 * raw));

I also want to touch on the topic of complexity for a moment.  

For a variety of reasons we are now dealing with complexity on a scale never seen 
before.  We would be wise to look at how others are managing this complexity.

Algorithms, as mentioned earlier, are very powerful.  With great power comes great 
responsibility.  Care must be taken even with something as simple as exponential 
smoothing.  This is a snippet of C++ from a medical device I reviewed a few years ago.  
One line out of tens of thousands of lines of source code.

Notice anything wrong?
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smoothed += ((0.7 * smoothed) + (0.3 * raw));

smoothed  = ((0.7 * smoothed) + (0.3 * raw));

There’s a plus sign in front of the equals.  One innocuous little character.

Unfortunately, the algorithm intended by the algorithm engineer doesn’t have a plus 
sign
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smoothed += ((0.7 * smoothed) + (0.3 * raw));

smoothed  = ((0.7 * smoothed) + (0.3 * raw));

smoothed  = ((1.7 * smoothed) + (0.3 * raw));

And the plus sign has undesirable effect on the result

54



smoothed += ((0.7 * smoothed) + (0.3 * raw));

smoothed  = ((0.7 * smoothed) + (0.3 * raw));

smoothed  = ((1.7 * smoothed) + (0.3 * raw));

intended 
behavior

actual 
behavior

As you can see here.
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Taming complexity:  methods, tools, processes

• STPA

• MBD

• CM&S

• Chaos Engineering

• Statistics

• UQ/SA

• V&V

• CI/CD

https://array.aami.org/content/blog-post/lane-desborough-value-simplicity-complex-world

“There are two methods in software design. One is to make the 
program so simple, there are obviously no errors. The other is to 
make it so complicated, there are no obvious errors.”  - Tony Hoare

I have been battling complexity my entire industrial career.  Complexity is what most 
intimidates me about algorithms in general, and AI / ML algorithms in particular.  

One misplaced character in a million lines of source code can kill someone.  If the act 
of writing software is the act of writing bugs, then the only way to avoid bugs is to not 
write software.  Or to keep software as simple as possible and use well-established 
practices.  

As was discovered in 1974 in Flixborough, keeping a large inventory is a recipe for 
disaster.  Minimize technical debt.  The software you did not write does not have any 
bugs.  

Apply methods, tools, and processes from other industries who have been battling 
complexity for a lot longer than we have.
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And finally, I hope it is clear that fielding safe and effective cyberphysical systems at 
commercial scale takes a village.  It’s much more than just the algorithm.
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Case Study: Automated Insulin 
Delivery (AID)
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14 years ago we were plunged into the medical device world when our son was 
diagnosed with type 1 diabetes.  
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To the list of energies I shared earlier, I propose to add another:  biologic energy.
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Biologic
Energy

Insulin lowers blood glucose.  Glucose is a key energy source.  Too little or too much insulin 
will kill someone with diabetes quite quickly.  Here’s my wife – an RN – administering an IV to 
my son to mitigate the effect of insufficient insulin.  

Prior to the discovery of insulin 100 years ago, diabetes was a terminal diagnosis.

Now, through careful delivery of insulin, blood glucose can be managed and people with 
diabetes can live normal lives.

61



Act

Physiology

Sense

Decide

Managing blood glucose with insulin

Humans Carry 
Risk and Burden
• Person with diabetes

• Care partners

• Healthcare professional

Human is “In the Loop”
• Sensing

• Deciding

• Acting

Type 1 
Diabetes

Physiologic closed loop control involves sensing, deciding, and acting.  

For someone without diabetes, the endocrine systems does this all by itself.  But for 
someone with type 1 diabetes, they must sense their blood glucose and estimate meal 
carbs, decide how much insulin to take to keep blood glucose within a safe range, and 
act to inject the insulin.  

The human is in the loop, manually performing the sense, decide, act tasks.

From personal experience, as the father of a child with type 1 diabetes, I can tell you 
this sense, decide, act task carries huge risk and burden.  Mostly for the person with 
diabetes, but also their parents and healthcare professionals.
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Act

Physiology

Sense

Decide

Automated Insulin Delivery (AID):  
From “In the Loop” to “On the Loop”

Purpose of automation: 
to transfer variability 
from a place where it 
hurts (the sensor) to a 
place where it doesn’t 
hurt as much (the 
actuator) so that 
humans don’t have to 
do as much work

Supervise

Continuous 
Glucose 
Monitor (CGM)

Insulin Pump

Automation of the sense, decide, and act tasks changes the role of the human from 
being “in the loop” to being “on the loop”.
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Act

Physiology

Sense

Decide

Automated Insulin Delivery (AID):  
From “In the Loop” to “On the Loop”

Supervise

Continuous 
Glucose 
Monitor (CGM)

Insulin Pump

Human is “On the Loop”
• Supervising

• Troubleshooting

• System Maintenance

This frees the user from rote, relentless tasks but creates new challenges and new 
tasks.
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Trends, Alerts, Faults

Algorithms power multiple feedback loops

Automated 
System

Person 
with 

Diabetes

Provider

Payer

Regulator

Partner

Reimbursement, 
Devices

Device Access,
Firmware Updates

Therapy
Adjustments

Assistance

Safety Reports

Mode Changes,
Boluses, Maint.

Meal 
Announcements

Effectiveness 
Reports Individualization

Reports

sense act

By the way this applies not just to the Automated Insulin Delivery loop.  There is huge 
opportunity for partially or fully automate these loops as well.

Remote monitoring

Clinician decision support

Adverse event reporting

Post market vigilance

Population health
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Complexly interactive
anaerobic 

exercise, illness, 
stress, protein, 
hormones, fat, 
medications, 
sleep, alcohol

carbohydrate 
counting error

meal size 
and timing

missed meal 
boluses

Response to 
notifications behaviors

bolus 
calculator

insulin
response

continuous 
glucose 
monitor

setpoint

carbohydrate
response

+

+

+

+insulin 
delivery 
pathway

Control 
algorithm(s)

bolus

+

+

notification 
system

basal 
delivery

algorithms physiology

basal

hardware

It’s important to keep in mind that the system in which these algorithms operate is 
complexly interactive.  Just look at all the flows of data.
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Complexly interactive
anaerobic 

exercise, illness, 
stress, protein, 
hormones, fat, 
medications, 
sleep, alcohol

carbohydrate 
counting error

meal size 
and timing

missed meal 
boluses

Response to 
notifications behaviors

bolus 
calculator

insulin
response

continuous 
glucose 
monitor

setpoint

carbohydrate
response

+

+

+

+insulin 
delivery 
pathway

Control 
algorithm(s)

bolus

+

+

notification 
system

basal 
delivery

algorithms physiology

basal

hardware

Consider blood glucose being sensed by a CGM algorithm which has error or drift, 
passing into a notification system algorithm which presents the user with an alarm.  
Humans have varied responses to alarms, often informed by the reliability / accuracy 
of the alarm algorithm.  The alarm may trigger a carb rescue or correction bolus.
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Complexly interactive
anaerobic 

exercise, illness, 
stress, protein, 
hormones, fat, 
medications, 
sleep, alcohol

carbohydrate 
counting error

meal size 
and timing

missed meal 
boluses

Response to 
notifications behaviors

bolus 
calculator

insulin
response

continuous 
glucose 
monitor

setpoint

carbohydrate
response

+

+

+

+insulin 
delivery 
pathway

Control 
algorithm(s)

bolus

+

+

notification 
system

basal 
delivery

algorithms physiology

basal

hardware

This may in turn have an effect on blood glucose, which in turn affects the algorithm 
and its response.

Try and imagine the difficulty of anticipating the risks of these component interactions.

68



Law of unintended consequences

Mandatory low 
alarms

Adjustable insulin 
action time

Insulin delivery 
constraints

Cobra Effect
Abandon therapy, 
too burdensome

Incorrect model, 
too aggressive

“Fake carbs” as 
workaround / cheat

https://en.wikipedia.org/
wiki/Perverse_incentive 

This complex interactivity can and has produced unanticipated and undesirable second 
order effects thanks to the law of unintended consequences / the Cobra Effect.  

Here are some examples from automated insulin delivery. Well-intentioned algorithm 
decisions often have negative consequences.  These should be anticipated and 
mitigated during design.  And there should be a post-market feedback loop which 
affords rapid detection and updating.
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1. Correlation 
2. Autocorrelation
3. Nonlinearities 
4. Non-Normal distributions
5. Short sample lengths
6. Inaccurate / biased metrics
7. Inconsistent recording
8. Missing data 
9. Heteroscedasticity 
10. Premastication 

Diabetes Data is Messy!

11. Sensor artifacts 
12. Unmeasured inputs 
13. Coincident inputs 
14. Lack of persistent excitation 
15. Feedback
16. Recruitment bias 
17. Sampling bias 
18. Incomplete data 
19. Nonrandomized experiments 
20. Poorly designed experiments

On top of all of this, diabetes data sucks.  There are nearly fifty sources of variation in 
blood glucose for people with diabetes and we measure only a handful of them – 
poorly.  We don’t accurately measure most things, and what do things we measure – 
blood glucose, insulin – are quite messy.

Diabetes data shares many attributes of other health / medical data which make 
algorithm development a challenging task.

Oh and most data is hidden in corporate fortresses or otherwise inaccessible for 
privacy / legal reasons. 
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Summary

71



Algorithms in Healthcare

• Pharmacovigilance
• Population health
• Adverse event reporting
• Healthcare reimbursement
• Telemedicine
• Home healthcare
• Diagnostics

• clinician decision support
• radiation planning

• Treatment
• closed loop drug delivery

(diabetes, anesthesia, ventilation)

Act

“THING”

Sense

Decide

Supervise

Automated System

P e rson with Diabetes

P r ovider

P ayer

Re gulator

P artner

sense act

decide

In summary, algorithms have the potential to positively impact medicine, healthcare, 
and medical products in many way.
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Software is a 
harmless mental 
abstraction until 
it is instantiated 
in the physical 
world

David Gent, “Software Upgrade Triggers Events that 
Lead to Plant Shutdown”, AIChE Ethylene producers' 
conference; 2004; New Orleans, LA, 16; 542-563

Most any parameter can be a critical 
parameter … so manage them all 
carefully … if you don’t manage change, 
change will manage you

But we should not be cavalier about how we manage algorithms through their 
lifecycles.  These algorithms are embedded in cyberphysical systems interacting with 
the real world, managing large and potentially deadly amounts of energy.
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“Outsource to the computer”, but beware
That which you do not have 
does not cause problems

Never forget that the physical side of 
cyberphysical systems involves energy

The purpose of automation is to transfer 
variation from a place where it hurts, to a 
place where it doesn’t hurt as much, in 
order to make a human’s job easer. Complexity 

is easy to 
add, hard 
to remove

Complexity adds cost, risk, and 
delay (and technical debt, and 
late cycle surprises).

Other industries 
are decades ahead

I am in full support of deployment of algorithms to improve health outcomes.  This 
being said, there are many challenges.  Fortunately, other industries have developed a 
wealth of experience and a powerful set of methods, tools, and practices which we 
can directly benefit from.   As science fiction author William Gibson says, “the future is 
already here, it just hasn’t been evenly distributed yet”.
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Thank You!
Lane@NudgeBG.com
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